Posted in | News | Medical Robotics

EPSRC Funding to Three Projects Focusing on Robotic Trousers, Prosthetic Hands, and Biosensors

A prosthetic hand controlled by the nervous system, robotic clothing to help people with walking, and biosensors to monitor how patients use equipment or exercise during rehabilitation are the focus of three research projects awarded £5.3 million by the Engineering and Physical Sciences Research Council (EPSRC).

The three innovative research projects start work in the spring and are led by Newcastle University, the University of Bristol and the University of Warwick working with 15 other university partners.

UK scientists and clinicians devised the research after being challenged to transform the design and development of assistive and rehabilitative devices using EPSRC’s creative workshop approach, known as a sandpit.

Philip Nelson, Chief Executive of EPSRC said; “These research studies will improve patients’ lives, allow greater independence and benefit patients with a wide range of mobility and co-ordination difficulties. With the UK’s ageing population and a rise in disabilities, this highlights one area of EPSRC investment in healthcare research which has a national impact.”

The three projects are:

Enabling Technologies for Sensory Feedback in Next-Generation Assistive Devices (EP/M025977/1) Research at Newcastle University, University of Essex, Imperial College London, Keele University, University of Southampton and University of Leeds. Awarded £1.4 million

The Newcastle-led team will develop a prosthetic hand which will give users a sense of feedback. The team will build fingertip sensors to give the prosthesis a realistic sense of touch, including pressure, shear and temperature. In addition, a ‘virtual hand’ will provide information on the sense of the hand’s position and movement, known as proprioception. Finally, the system will translate the signals to a form the brain understands and stimulate the nervous system to help the user control the hand.

Building this level of feedback into prosthetic devices will enable much higher levels of function for people who have lost their limbs, than is currently available.

Using an advanced prosthetic hand would help people to naturally reach out and pick up a glass, for example, whilst maintaining eye contact in a conversation, or pick up an apple without bruising it. This will advance the field of prosthetics, provide enhanced function to prosthesis users and decrease the learning time involved when acquiring a new device. The technology will also have applications for patients with neurological conditions where reduced sensation is a factor.

Wearable Soft Robotics for Independent Living (EP/M026388/1) Research at the University of Bristol, University of the West of England, University of Nottingham, University of Leeds, University of Strathclyde, University of Southampton and Loughborough University. Awarded £2 million

The research team will develop soft robotic clothing to enable those with mobility impairments, disabilities and age-related weakness to move easily and unaided and to live independently and with dignity. The end results will be easy to use, comfortable, adaptable and meet the user’s individual mobility needs.

Smart trousers could help vulnerable people avoid falls by supporting them whilst walking, give people added bionic strength to move between sitting and standing positions, and help people climb stairs which were previously insurmountable. They could replace the stair lift in the home and other bulky and uncomfortable mobility and stability aids. Ultimately they have the potential to free many wheelchair users from their wheelchairs.

This intelligent clothing or ‘second skin’ will use artificial ‘muscles’ made from smart materials and reactive polymers which are capable of exerting great forces. This will be developed using the latest wearable soft robotic, nanoscience, 3D fabrication, functional electrical stimulation and full-body monitoring technologies, all driven by the need of the end users, who will also be directly involved in the project. They will include control systems that monitor the wearer and adapt to give the most suitable assistance, working with the body’s own muscles. For patients needing rehabilitation the smart clothing can initially provide strong support and subsequently reduce assistance as the patient recovers mobility and strength.

Many existing devices used by people with mobility problems can cause or aggravate conditions such as poor circulation, skin pressure damage or susceptibility to falls, each of which is a drain on health resources. Wearable Soft Robotics has the potential to alleviate many of these patients problems and reduce healthcare costs.

Adaptive, Assistive Rehabilitative Technology: Beyond the Clinic (EP/M025543/1) The University of Warwick is partnering with Cardiff University, University of Kent, UCL (University College London), Oxford Brookes University, University of Salford and University of York. Awarded £1.86 million

Researchers will design and develop cheap, disposable, unobtrusive bio-sensors such as temporary tattoos and smart watches to use with patients who use wheelchairs or prosthetics, patients requiring rehabilitation, as well as older people.

The study will collect data and monitor how patients use equipment provided to them, and also measure how they follow exercise advice at home, for example, after a stroke or accident. The research will also develop software that uses the biosensor information to support users with their equipment or exercises in their own home. Currently there is no picture of what happens after a patient leaves the clinic. Anecdotally, poor use of equipment or not following physiotherapy guidance on exercise can lead to more complex health problems.

The information will benefit patients and enable them to leave hospital sooner and enable clinicians and medical technologists to understand conditions, better support patients in their home environment, and improve or adjust the design of equipment for patients.

Christopher James, project lead, and Professor of Biomedical Engineering, University of Warwick said: “The new information we will gain from this research will be invaluable, and through a feasibility study, it is our aim to produce a system ready for future technical/clinical trials within the NHS.”

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.