Innovative AI Method for Microfossil Detection in Geological and Climate Research

Researchers have developed a method for detecting and analyzing microfossils automatically from microscope images using AI. Microfossil analysis is important both for industry and research to gain an understanding of the subsurface, and to understand the past geological time period and the past climate.

Microfossil analysis allows us to map the subsurface and understand past geological times. In research labs all over the world geologists spend countless hours looking through the microscope identifying and counting microfossils extracted from sedimentary rock below the seabed. The analysis is time-consuming but important, as the species distribution tell a great deal about the geological time period of sedimentary layers from the subsurface, as well as the climatic conditions at the earths surface at the time when these microfossils were formed.

In a recent study (https://doi.org/10.1016/j.aiig.2024.100080) published in the KeAI journal Artificial Intelligence in Geosciences, researchers at the machine learning group at University of Tromsø (UiT) The Arctic University of Norway created an advanced method for automatically detecting and analyzing microfossils from microscope images using AI. The team, in collaboration with industry partner Equinor, presented a method for automatic microfossil detection and analysis.

"This work shows that there is great potential in utilizing AI in this field," says researcher Iver Martinsen, first and co-corresponding author of the study. "By using AI to automatically detect and recognize fossils, geologists might have a tool that can help them better utilize the enormous amount of information that wellbore samples provide".

Microfossils are found in vast amounts everywhere, but the time and expertise required to analyze the data means that only a fraction of the available fossils are analyzed. The method the researchers used are based on state-of-the-art AI methodology — training an AI model completely without annotations, utilizing the large pool of raw data provided by the Norwegian Offshore Directorate.

"We used AI to detect fossils from one selected well on the Norwegian continental shelf, and in turn use 100,000 of the detected fossils to train a model for image recognition," shares Martinsen.

To evaluate how well the model performs, the researchers tested the model by classifying several hundreds labeled fossils from the same well.

"We are very happy with our results. Our model exceeds previous benchmarks available out there. We hope that the present work will be beneficial for geologists both in industry and academia," adds Martinsen.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.