Three High School Students Use Generative AI to Discover New Brain Tumor Drug Targets

Three high school students – Andrea Olsen from Oslo, Norway; Zachary Harpaz from Boca Raton, Florida; and Chris Ren from Shanghai, China – co-authored a paper using a generative artificial intelligence (AI) engine for target discovery from Insilico Medicine (“Insilico”) called PandaOmics to identify new therapeutic targets for glioblastoma multiforme (GBM). GBM is the most aggressive and common malignant brain tumor, accounting for 16% of all primary brain tumors. The findings were published on April 26 in the journal Aging.

Olsen, a student at Sevenoaks School in Kent, UK, began interning at Insilico Medicine in 2021, after discovering her interest in neurobiology and technology. For the current paper, the fifth scientific paper she has co-authored before turning eighteen, she and other researchers used PandaOmics to screen datasets from the Gene Expression Omnibus repository maintained by the National Center for Biotechnology Information and found new therapeutic targets implicated for treating both aging and glioblastoma multiforme. 

Ren, a student at Shanghai High School International Division, has an interest in biology and biomarkers and joined them in the summer of 2022.

While there would seem to be a clear connection between aging and cancer, Olsen says their findings were more nuanced. “Sometimes, instead of aging, the body switches to cancer mechanisms, which was really interesting to discover.” She hypothesized that “the body is trying to preserve itself in a way that it is switching back to embryonic processes of cell division.” GBM is caused by a genetic mutation that leads to uncontrolled growth of glial cells, or cells that surround neurons in the brain. Even with existing therapies, the median survival for GBM patients is only 15 months. 

Harpaz, a student at Pine Crest School in Ft. Lauderdale, had an early interest in computer science and AI and soon developed a passion for biology as well. “I wanted to combine my two favorite topics, computer science and biology, into what I think is the most interesting field of biology - aging research,” Harpaz says. He discovered generative AI drug discovery company Insilico Medicine whose founder and CEO, Alex Zhavoronkov, PhD, connected him with Olsen. The two young researchers began collaborating on the glioblastoma project and ultimately presented findings at the Aging Research and Drug Discovery (ARDD) conference in Copenhagen, where they together launched the Youth Longevity Association (TYLA).

In this latest paper, the three teens used PandaOmics to analyze the genes and identified three that were strongly correlated with both aging and glioblastoma and could serve as potential therapeutic targets for new drugs. 

“We selected the genes that were overlapped to be highly correlated in 11 of the 12 datasets, and we split our data into young, middle aged, and senior groups,” said Harpaz. “We mapped this to the importance of the gene expression to survival.” After identifying two genetic targets for glioblastoma and aging – CNGA3 and GLUD1 – they cross-referenced their findings with earlier findings from Insilico around genes strongly correlated with aging and identified a third target – SIRT1.  

“I learned a lot about conducting a research project,” said Ren, who helped review the three targets. “The PandaOmics platform really made the project accessible to me. As a high school sophomore, I did not have sufficient experience for advanced research and analysis, however, I was still able to navigate the PandaOmics platform after a brief period of training to process and compare datasets of glioblastoma.”

The students say they are eager to continue their studies in AI and biology into college and to move the GBM research forward from target discovery to drug development. 

“The best way to take this research further is going to be using Insilico’s Chemistry42 software, where we can take the targets we identified through PandaOmics and generate small molecules, potential drugs, with these targets that have the potential to treat glioblastoma and aging at the same time,” says Harpaz. 

Prior to her internship at Insilico, Olsen says: “I never knew that AI could be so helpful in finding completely new therapeutic targets. For me, that was an incredible opportunity to dive into the field of research, aging, longevity, and neuroscience. It really kick-started my entire career.” 

“I am truly impressed by the commitment of these young researchers,” says Zhavoronkov. “I hope their work will inspire other young people excited about science and technology to look at how they can use AI tools to discover new targets and treatments for both aging and disease.”

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.